Joint Optimization in Edge-Cloud Continuum for Federated Unsupervised Person Re-identification

Person Re-identification (ReID)

 \succ Aim to re-identify a person from non-overlapping camera views.

Images from cameras that are **centralized** in a server

Challenges

Not feasible to centralize the training images due to data privacy protection regulations, e.g., GDPR

Regulations

Federated Unsupervised Person ReID System

Training with decentralized data suffers from statistical heterogeneity: different # images and # IDs; different illuminations, resolutions, etc.

Existing Works

Federated Person ReID [2]: implement federated learning to person ReID. It trains person ReID on edges instead of centralizing images

Training Flow

- 1. Local training: clients conduct training using local models
- 2. Model upload: clients upload trained backbones to the server
- 3. Model aggregation: server aggregates them for a new global model
- 4. Model update: server updates clients' local models with global model

How to address unlabeled data in clients? (Clustering Flow)

> Baseline: Hierarchical Clustering [3] to predict pseudo labels

Joint Optimizations of Cloud and Edge for statistical heterogeneity

Personalized Clustering (PC) @ Edge

Each client uses the profiler to obtain their personalized clusters to merge each round, since their # IDs and # images are different.

Contributions

- > A new federated unsupervised person ReID system, FedUReID.
- Joint optimizations of cloud and edge to address the statistical heterogeneity among edges.
- Extensive experiments and ablations demonstrate the effectiveness of FedUReID with joint optimizations.

Personalized Epoch (PE) @ Edge

Clients adjust computation according to training feedbacks: earlystop when they have enough computation for good precision.

Personalized Update (PU) @ Cloud

Update clients' model with personalization by interpolating the global and local models: $\theta_{k}^{r+1} = \mu \theta_{k}^{r} + (1 - \mu) \theta^{r+1}$

Experimental Results

Methods	Types	Market-1501 Dataset [38] (%)				DukeMTMC-reID Dataset [40] (%)			
		Rank-1	Rank-5	Rank-10	mAP	Rank-1	Rank-5	Rank-10	mAP
PUL [7]	Domain Adaptation	44.7	59.1	65.6	20.1	30.4	46.4	50.7	16.4
SPGAN [4]	Domain Adaptation	58.1	76.0	82.7	26.7	46.9	62.6	68.5	26.4
HHL [41]	Domain Adaptation	62.2	78.8	84.0	31.4	46.9	61.0	66.7	27.2
BUC [20] (Standalone)	Purely Unsupervised	61.9	73.5	78.2	29.6	40.4	52.5	58.2	22.1
Baseline	Purely Unsupervised	60.5	73.3	77.9	27.4	47.0	58.3	64.1	25.2
FedUReID (Ours)	Purely Unsupervised	65.2	77.8	82.2	34.2	51.0	62.4	67.6	29.5

Datasets	Basalina		Edge	9	Cloud	Joint
Datasets	Daseinie	PC	PE	Both	PU	All
DukeMTMC-reID[40]	47.0	48.3	49.5	50.4	49.2	51.0
Market-1501[38]	60.5	62.5	64.0	65.1	62.2	65.2
CUHK03-NP[19]	7.8	8.4	7.9	8.1	8.8	8.9

PRID2011[11]	31.0	34.0 35.0	37.0	36.0	38.0
CUHK01[18]	34.8	39.3 39.2	42.6	35.4	43.6
VIPeR[9]	21.8	$24.4 \ 24.4$	24.7	22.5	26.6
3DPeS[1]	63.8	65.5 64.6	67.5	65.0	65.5
iLIDS-VID[29]	71.4	73.5 70.4	70.4	72.5	73.5

(1) FedUReID with all optimizations outperforms other methods on two datasets

(3) Ablation study: each optimization leads to better performance

(2) FedUReID with all optimizations outperforms baseline and standalone training (training with one client) on all datasets.

References

[1] Zheng, Zhedong, et al. "Unlabeled samples generated by gan improve the person re-identification baseline in vitro." ICCV. 2017. [2] Zhuang, Weiming, et al. "Performance optimization of federated person re-identification via benchmark analysis." ACMMM. 2020. [3] Lin, Yutian, et al. "A bottom-up clustering approach to unsupervised person re-identification." AAAI. 2019.

