Joint Optimization in Edge-Cloud Continuum for Federated Unsupervised Person Re-identification
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Federated Unsupervised Person RelD System

Person Re-identification (RelD)

» Aim to re-identify a person from non-overlapping camera views. Cloud Server
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» Training with decentralized data suffers from statistical heterogeneity:
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different # images and # IDs; different illuminations, resolutions, etc. Training Flow
DukeMTMC Market1501 CUHKO3-NP PRID2011 CUHKO1 VIPeR 3DPeS iLIDS-VID 1 Local training. ClientS COndUCt training USing IOcaI mOdels
| 'raw . el
3 Datasets used 2. Model upload: clients upload trained backbones to the server
> : in the paper 3. Model aggregation: server aggregates them for a new global model
4. Model update: server updates clients’ local models with global model

— How to address unlabeled data in clients? (Clustering Flow)
Existing Works > Baseline: Hierarchical Clustering [3] to predict pseudo labels

» Federated Person RelD [2]: implement federated learning to person Joint Optimizations of Cloud and Edge
RelD. It trains person RelD on edges instead of centralizing images for statistical heterogeneity
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Federated Learning ) 5 $_>$ Annotating data is Personallz.ed Clustering (F.>C) @ Edg.e |
4. Model Aggregation Expensive, Laborious, and » Each client uses the profiler to obtain their personalized clusters to
o B Time-consuming merge each round, since their # IDs and # images are different.
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> » Clients adjust computation according to training feedbacks: early-
%;g% Problem: need data labels stop when they have enough computation for good precision.
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» A new federated unsupervised person RelD system, FedURelD. : ‘/. 3/. &' 1|f agfeilr(e;cisionavg>0-95 or precisiony, == 1then
» Joint optimizations of cloud and edge to address the statistical
heterogeneity among edges. Personalized Update (PU) @ Cloud
» Extensive experiments and ablations demonstrate the effectiveness » Update clients’ model with personalization by interpolating the global
of FedURelD with joint optimizations. and local models: 9£+1 = p67 + (1 - 1)or+l

Experimental Results

: Edge Cloud Joint
Methods Types Market-1501 Dataset [38] (%) DukeMTMC-reID Dataset [40] (%) Datasets Baseline — PEg Both. PO Al
Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP
DukeMTMC-reID[40] 47.0 483 49.5 504 492 51.0
PUL [7] Domain Adaptation 44.7 59.1 65.6 20.1 30.4 46.4 50.7 16.4 Market-1501[38] 60.5 625 64.0 651 622 65.2
SPGAN [4] Domain Adaptation  58.1 76.0 82.7 26.7 46.9 62.6 68.5 26.4 CUHKO03-NP[19] 78 84 79 81 88 89
HHL [41] Domain Adaptation 622  78.8 84.0  31.4 469 610 66.7  27.2 tRID2011111] 310 340 350 570 360 380
BUC [20] (Standalone) Purely Unsupervised  61.9 73.5 78.2 29.6 40.4 52.5 58.2 22.1 CUHK01[18] 248995 992 426 B4 43.6
Yy P ' ' ' ' ' ' ' ' VIPeR[9] 21.8 244 244 247 225 26.6
Baseline Pure..y Unsupervised 60.5 73.3 77.9 27.4 47.0 58.3 64.1 25.2 3DPeS[1] 63.8 65.5 64.6 67.5 65.0 65.5
FedUReID (Ours) Purely Unsupervised  65.2 77.8 82.2 34.2 51.0 62.4 67.6 29.5 iLIDS-VID[29] 714 735 704 704 725 73.5
(1) FedURelD with all optimizations outperforms other methods on two datasets (3) Ablation study: each optimization leads to better performance
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