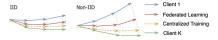
Collaborative Unsupervised Visual Representation Learning From Decentralized Data

Weiming Zhuang^{1,2}, Xin Gan¹, Yonggang Wen¹, Shuai Zhang², Shuai Yi²

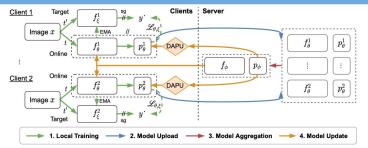
Unsupervised Representation Learning

- Learn visual representations without labels
- Achieved remarkable performance on centralized data available on the Internet


Challenges

 Unable to centralize growing decentralized unlabeled data due to privacy concerns

 Non-independently and identically distributed (non-IID) data leads to divergence [1]


Contributions

- FedU, a new federated unsupervised representation learning framework
- Address non-IID problem:
 - Design a communication protocol
 - o Propose divergence-aware predictor update

Existing works

- 1. Single client training: bad result. 3. Federated unsupervised learning:
- 2. Federated learning: need labels
- o [2]: bypass non-IID problem
- o [3]: potential privacy leakage risk

Proposed: FedU Framework

Iterate four key activities until stopping conditions

- 1. Local training: clients conduct unsupervised learning (BYOL [4])
- 2. Model upload: clients upload trained models to the server
- 3. Model aggregation: server aggregates them to obtain a new global model
- 4. Model update: server updates clients' local models with global model

Communication Protocol

- Q: Which encoder to aggregate?
 A: Online encoder -- has latest learnt knowledge
- Q: Which encoder to update?
 A: Online encoder -- keep target encoder for regression targets

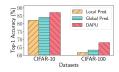
Divergence-aware Predictor Update

Q: Which predictor to update?

$$p_{ heta} = egin{cases} p_{\phi} & \left\| heta^r - \phi^{r-1} \right\|_2^2 < \mu \\ p_{ heta} & ext{otherwise} \end{cases}$$

Intuition:

- Small divergence: use the global p_A
- $\bullet~$ Large divergence: use the local ${\bf p}_{\!_{\scriptstyle \Phi}}$


Evaluation

• Setup: 5 clients, one fifth of total classes per client

Method	Architecture	Param.	CIFAR-10		CIFAR-100	
Wictiou			IID	Non-IID	IID	Non-IID
Single client training	ResNet-18	11M	81.24	71.98	51.33	49.69
Single client training	ResNet-50	23M	83.16	77.84	57.21	55.16
FedSimCLR [1] [36]	ResNet-50	23M	68.10	64.06	39.75	38.70
FedCA [36]	ResNet-50	23M	71.25	68.01	43.30	42.34
FedSimSiam [2]	ResNet-50	23M	79.64	76.70	46.28	48.80
FedU (ours)	ResNet-18	11 M	85.21	78.71	56.52	57.08
FedU (ours)	ResNet-50	23M	86.48	83.25	59.51	61.94

Linear evaluation

Aggregate	Update	Accuracy (%)				
		Global Pred.	Local Pred.			
Online	Online	84.07	82.18			
Online	Target	9.99	19.22			
Online	Both	81.24	18.23			
Target	Online	82.10	78.06			
Target	Target	9.99	25.02			
Target	Both	82.32	29.03			

- Left: Ablation on the communication protocol
- Right: Ablation on DAPU (Divergence-aware Predictor Update), compared with using only global or local predictors

References

- [1] Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).
- [2] van Berlo, et al. "Towards federated unsupervised representation learning." In Proc. EdgeSys, 2020.
- [3] Zhang, Fengda, et al. "Federated unsupervised representation learning." arXiv preprint arXiv:2010.08982 (2020).
- [4] Grill, Jean-Bastien, et al. "Bootstrap your own latent: A new approach to self-supervised learning." In Proc. NIPS, 2020

Paper & Code: https://weiming.me/